

Drugs and Sleep: What the Cardiologist should know Professor Atul PATHAK, MD, PhD.

Head of Cardiovascular Medicine (Monaco) Director Research Team CNRS (from Hypertension to Heart Failure) (France) Adjunct Professor of Medicine Philadelphia (USA) President of the French Society for Hypertension (SFHTA) Past President of the European Society for Patient Care (SETE)

European Hypertension Excellence Center Princess Grace Hospital Monaco Drugs adversely affecting OSA thus overstimating severity

- Benzodiazepines,
- Opioids,
- Muscle relaxants,
- Male hormones
- Testing could be done with (real life setting)
- Drugs can be weaned to improve symptoms

Drugs that do not affect OSA and can even potentially improve respiratory function during sleep underestimating severity :

- anti-inflammatory drugs,
- diuretics,
- bronchodilators,
- acetylcholinesterase inhibitors,
- antiparkinsonian,
- decongestant drugs, drugs for intranasal use,
- topical soft tissue lubricant,
- female sex hormones.

- Management of the disease can directly/ indirectly improve sleep pattern:
 - Central Sleep Apnea and HF
 - Body weight reduction in HTN or patient with Diabetes
- Management of the disease can sometimes avoid / post pone requirement for ventilation

EN FRANCAIS

PEU IMPORTE LE SOMMEIL !!

BENEFICE CV >> RISQUE SOMMEIL

MAIS ADAPATATION POUR AMELIORER LE CONFORT, LES SYMPTOMES ET DONC ADHESION

Alpha Blocker: IMPORTANCE OF CENTRAL EFFECT

Dexmedetomidine cousin de la clonidine

Clondine et Dexmetomidine

Authors	Study design	LOE	Diagnosis	Type of surgery	Pts N	Intervention	Medication requirement	Pain and emergence	Hemodynamics	Respiratory events	Hospital stay
Pawlik ¹²⁷ 2005	RCT	1b	PSG	Septoplasty ± UPPP	30	Oral clonidine 2 ug/kg the evening before and 2 h before induction	\downarrow Propofol (P <0.05). \downarrow Antihypertensives (P <0.001)	I mean VAS in PACU and 24h (P <0.001) in clonidine group; faster eye opening on command in clonidine group (P <0.05)	↓ MAP and HR during surgery and emergence in clonidine group (P <0.001)	↓ desaturation indices in perioperative period vs baseline values in both groups (P <0.05)	NA
Chawla ¹⁴⁰ 2010	Chart review\$	20	Previous h/o OSA	Airway re- construction	Dex 125 Control 143	Dex 1 ug/kg and infusion of 0.1- 0.2 ug/kg/hr	$\downarrow Hydralazine$ $(P < 0.001)$ $\downarrow GTN (P = 0.005)$ $\downarrow Clonidine$ $(P < 0.001)$ $\downarrow Beta blockers$ $(P < 0.001)$	\downarrow Morphine ($P = 0.008$)	Stable MAP	NA	NA
Olumuyiwa ⁽⁴²⁾ 2009	Cohort\$	2c	PSG	Laparoseopie bariatrie	22 OSA pts	Dex 1 ug/kg and infusion at 0.4 ug/kg/hr	No intraoperative opioid needed	4 Pain score in PACU; No postoperative opioid needed	Stable hemodynamics	NA	NA
Dhar ^{tsei} 2003	Case series	4	Previous h/o OSA	Laparoscopy; colostomy	2	Dex 1 ug/kg and infusion at 0.2 ug/kg/hr	NA	Smooth emergence	Stable hemodynamics	No adverse events	NA
Basem ⁽⁺¹⁾ 2007	Case series	4	Previous h/o OSA	Tracheos- tomy	5:2 OSA pts	Dex 1 ug/kg and infusion at 0.6 ug/kg/hr	NA	Patients comfortable	Transient↓ BP	No adverse events	NA
Plunkett ⁽⁸⁶⁾ 2009	Case report	4	Previous h/o OSA	Awake Thy- roidectomy	1	Dex 1 ug/kg and infusion at 0.2- 1.0 ug/kg/hr	↓ Fentanyî	\downarrow Pain score in PACU	Stable intraop vital signs	No adverse events	NA
Ramsay ⁽³⁷⁾ 2006	Case report	4	Previous h/o OSA	Tracheal resection	1	Dex 1ug/kg and infusion at 0.7- 10 ug/kg/hr	No intraop or postop opioid	No pain Smooth emergence	↓ BP	SpO ₂ >95% throughout the procedure	2 days
Hofer ⁽⁴⁴⁾ 2004	Case report	4	Previous h/o OSA	Roux-en-Y gastric bypass	1	Dex 1.4 ug/kg and infusion at 0.7 ug/kg/hr	NA	↓ Morphine	NA	NA	NA
Huncke ⁽³⁶⁾ 2008	Case report	4	Previous h/o OSA	Awake eraniotomy	1	Dex 0.4ug/kg and infusion at 0.1-0.2 ug/kg/hr	Remifentanil infusion	Minimal pain; Mildly sedated; Verbally responded	NA	No adverse events	NA

RCT: Randomized double-blinded placebo-controlled trial; LOE: Level of evidence; Pts N: Number of patients; S: Retrospective; UVPP: Uvulo palato pharyngoplasty; PSG: Polynomnography; OSA: Obstructive sleep apnea; Dex: Dexmedetomidine; PACU: Post anesthesia care unit; NA: Not available; SpO_, Oxygen saturation, VAS: Visual analog scale; MAP: Mean arterial pressure; HR: Heart rate

Inconsistent Data

- One study in hypertensive patients found that clonidine decreased total sleep time, however another study in healthy patients showed that clonidine increased total sleep time.
- Another study reported that clonidine suppressed rapid eye movement (REM) sleep and the apneas occurring during REM, which decreased nocturnal hypoxemia.
- Despite the inconsistent data on the effects of the alpha adrenergic agonists on sleep quality it is clear that the class exhibits a high degree of CNS effects.
- MESSAGE FOR CARDIOLOGIST :
 - As such, these agents probably should not be considered preferred agents for hypertension, particularly in the geriatric population and specially if OSA / Anesthesia.

AAR

Class I AA: No Problem

Class I

- Few studies showing any negative effects of the Class I antiarrhythmics on sleep quality.
- Propafenone states that insomnia occurs in 1-2% of patients, with fatigue occurring in 2-6% and drowsiness occurring in 1% of patients.
- Despite paucity of association it seems prudent to discuss these adverse reactions with patients and the geriatric subset of patients in particular

Class II: Beta Blockers all about PK

According to their lipid solubility Hydrophilic

	Lipophilic	Hydrophilic		
Oral absorption	Complete	Irregular		
Liver metabolism	Yes	No		
t _{1/2}	Short	Long		
CNS side effects	High	low		
	Metoprolol Propranolol, Timolol Labetalol , Carvedilol	Atenolol, Bisprolol, Esmolol Sotalol		

Drug – Drug interaction Polymorphism Half life

CNS depressant effects i.e. Sedative effectce Anxiety

Beyond sleep CNS side effects with impact on sleep (complex semiology)

*established positive control

AA Class III: No problem

Amiodarone

This agent is known to have a plethora of adverse reactions, many of them serious. CNS effects, including insomnia, fatigue and other sleep disturbances are described as occurring in 3% to 40% of patients in the package labeling and neurologic side effects were reported in the literature in 20-40% of patients.

Dronedarone

This is the newest agent of the class and while it has decreased efficacy over amiodarone, it also has decreased adverse reactions, including no known adverse effects on sleep quality or architecture. Dofetilide

There are no published studies detailing any association between dofetilide and negative sleep quality; however, the package labeling states that insomnia occurs in 4% of treated patients.

• Sotalol

8% occurrence of undefined sleep problems; however a very small published study which evaluated the effects of sotalol 320mg or 960mg on the CNS via sleep, EEG, and psychophysiological parameters showed no difference between the two treated groups.

• The Class III agents, although similarly classed, have vastly different associations with sleep disturbance and sleep quality.

Class IV: Non-dihydropyridine Calcium Channel Blockers, NO PROBLEM

- Diltiazem and Verapamil: no data indicating an association between diltiazem and sleep disturbance and although sleep disturbance is listed as a potential adverse effect in the product labeling of verapamil, it is not known to be a common side effect, occurring in less than 1% of patients treated.
- BUT VERAPAMIL inhibits CYP450 3A4 and can increase plasmatic concentration of drugs affecting sleep

RAS blocking agent

Angiotensin Converting Enzyme (ACE) Inhibitors / ARB

- ACE inhibitors are thought to negatively affect sleep in some patients by increasing the amount of circulating bradykinin.
- The associated cough and rhinopharyngeal inflammation induced by the bradykinin may worsen the AHI.
- Additionally, ACE inhibitors may affect potassium levels, potentially leading to leg cramps as well as painful joints and muscles in some patients.
- Since these side effects do not affect all patients, clinicians should discuss them with patients and adjust therapy accordingly if necessary, to avoid sleep disturbances.

Impact of sacubitril-valsartan combination in patients with chronic heart failure and sleep apnoea syndrome: the ENTRESTO-SAS study design

Dany Jaffuel¹, Nicolas Molinari², Philippe Berdague³, Atul Pathak⁴, Michel Galinier⁵, Marion Dupuis⁶, Jean-Etienne Ricci⁷, Jean-Pierre Mallet¹, Arnaud Bourdin¹ and François Roubille⁸*

¹Department of Pneumology, Arnaud de Villeneuve, Regional University Hospital of Montpellier, 371 Avenue du Doyen Giraud 34295, Montpellier Cedex 5, France; ¹Department of Medical Information, Montpellier University Hospital, IMAG UMR 3140, Montpellier University, 34050, Montpellier, France; ³Department of Cardiology, Béziers Hospital, 2 rue Valentin Haüy, BP 740 34525, Béziers Cedex, France; ³Department of Cardiology, University Hospital, 2 Nontpellier, Parter Faluer Unit, Health Innovation Laboratory, Clinique Pasteur, Avenue de Lambez 31000, Toulouse, France; ³Department of Cardiology, University Hospital of Nanguell, 1, Avenue Professeur Jean Poulhes 31055, Toulouse, France; ¹Department of Pneumology, Respiratory Tracts Center, Hópital Larrey, 24, chemin de Pouvourville, T5, 3 40020 31055, Toulouse, Cedex 9, France; ¹Department of Cardiology, University Hospital Caremau, Place du Pr Robert Debri 30029, Nimes Cedex 9, France; ¹Department of Cardiology, Respiratory Hospital (Montpellier, PhyMedEx), University Hospital Caremau, Place du Pr Robert Debri 30029, Nimes Cedex 9, France; ¹Department of Cardiology, Regional University Hospital of Montpellier, PhyMedEx), University of Montpellier, INSERM UJO46, CINS UMR, 9214, Montpellier, France

Abstract

Aims Sleep-disordered breathing (SDB) is a highly prevalent co-morbidity in patients with chronic heart failure (CHF) and can play a detrimental role in the pathophysiology course of CHF. However, the best way to manage SDB in CHF remains a matter of debate. Sacubitril-valsartan has been included in the 2016 European Society of Cardiology guidelines as an alternative to angiotensin-converting enzyme inhibitors to further reduce the risk of progression of CHF, CHF hospitalization, and death in ambulatory patients. Sacubitril and valsartan are good candidates for correcting SDB of CHF patients because their known mechanisms of action are likely to counteract the pathophysiology of SDB in CHF.

Methods and results The ENTRESTO-SAS trial is a 3-month, multicentric, prospective, open-label real-life cohort study. Patients eligible for sacubitril-valsartan treatment (i.e. adults with left ventricular ejection fraction ≤35%, who remain symptomatic despite optimal treatment with an angiotensin-converting enzyme inhibitor, a beta-blocker, and a mineralocorticoid receptor antagonist) will be evaluated before and after 3 months of treatment (nocturnal ventilatory polygraphy, echocardiography, laboratory testing, and quality-of-life and SDB questionnaires). The primary outcome is the change in the Apnoea– Hypopnoea Index, before and after 3 months of treatment. One hundred twenty patients are required to detect a significant 20% Improvement of the Apnoea–Hypopnoea Index with a power of 90% at an alpha risk of 5%.

Conclusions In the context of the SERVE-HF study, physicians are waiting for new trials and alternative therapies. We sought to assess in the ENTRESTO-SAS trial whether sacubitril–valsartan could improve the outcome of SDB in CHF patients.

Keywords Heart failure; Sleep apnoea syndrome; Continuous positive airway pressure; Sacubitril-valsartan; Sleep-disordered breathing

Received: 20 June 2017; Revised: 10 November 2017; Accepted: 9 January 2018

*Correspondence to: François Roubille, Cardiology Department, University Hospital of Montpellier, Montpellier, France. Email: f-roubille@chu-montpellier.fr

Introduction

Chronic heart failure (CHF) is a frequent pathology marked by significant morbidity and mortality.¹ Approximately 1–2% of the adult population in developed countries has CHF, with a prevalence rising to \geq 10% among persons 70 years of age or older.² Despite progress in the medical management of CHF and a relative reduction in hospitalization in

recent years by 30–50%,^{3,4} the last European data (ESC-HF pilot study) demonstrated that 12-month hospitalization rates for hospitalized and stable/ambulatory CHF patients were 44% and 32%, respectively, and the 12-month all-cause mortality rates were 17% and 7%, respectively.⁵ At 4.5 years, mortality remains high in developed countries, reported in 2011 as reaching over 70% in an American cohort study.⁶

In this trial, SV treatment for 3 months in SA patients is associated with a significant decrease in AHI. These results support the current guidelines that recommend first an optimization of the HFrEF treatment in patients with HFrEF and central SA. A potential positive airway pressure sparing effect merits further investigation.

^{© 2018} The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

MRA and OSA in refractory HTN

	Tre	atmen	t	Ba	seline			Mean Difference	Mea	n Differenc	e	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Ra	indom, 95%	i Cl	
2.1.1 Non-randomize	d contro	led tri	als				201 VI 607 17 00375			10000000000000000000000000000000000000		
Gaddam et al.	22	6.8	12	39.8	19.5	12	29.5%	-17.80 [-29.48, -6.12]				
Krasinska et al.	28.7	18.22	31	49.5	32	31	24.0%	-20.80 [-33.76, -7.84]		공사		
Subtotal (95% CI)			43			43	53.5%	-19.14 [-27.82, -10.47]	-	8		
Heterogeneity: Tau ² =	0.00; Ch	i ² = 0.1	1, df =	1(P = 0)).74); F	2 = 0%						
Test for overall effect:	Z = 4.32	(P < 0.	0001)									
2.1.2 Randomized co	ntrolled	trial										
Yang et al.	14.8	6.3	15	38.2	17.3	15	46.5%	-23.40 [-32.72, -14.08]	-8-	2		
Subtotal (95% CI)			15			15	46.5%	-23.40 [-32.72, -14.08]	•			
Heterogeneity: Not ap	plicable											
Test for overall effect:	Z = 4.92	(P < 0.	00001)									
Total (95% CI)			58			58	100.0%	-21.12 [-27.47, -14.77]	•			
Heterogeneity: Tau ² =	0.00: Ch	i ² = 0.5	4. df =	2(P = 0)).76); l ^a	2 = 0%						
Test for overall effect:	Z = 6.52	(P < 0.	00001)		19/09/07	10000000		-100	-50	0	50	100
	1999 - 1999 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	101000	5-50725-50						Favours [Treatme	nt] Favour	s [Baseline]	

HMG Co-A Reductase Inhibitors: PK again

- These agents are known to cause muscle pain which may affect sleep quality by not allowing patients to fall asleep and stay asleep ? SAMSON study no !
- Lipophilic type HMG Co-A reductase inhibitors may cause a disturbance in sleep architecture and cause insomnia or nightmares via their increased penetration of the BBB.
- If difficulties with sleeping, it may be prudent to switch to a hydrophilic agent preferentially.

Lipo	philic (fat loving) statins	Hydrophilic (water loving) statins				
0	Lovastatin	0	Pravastatin			
0	Simvastatin	0	Rosuvastatin			
0	Atorvastatin					
0	Fluvastatin					
0	Pitavastatin					

Nutrition & Diabetes

ARTICLE

Open Access

Effect of dapagliflozin on obstructive sleep apnea in patients with type 2 diabetes: a preliminary study

Yi Tang¹, Qin Sun², Xiao-Yan Bai³, Yun-Fan Zhou⁴, Qiong-Lan Zhou⁵ and Min Zhang²

And beyond

Medication causing insomnia

Medications and Substances Known to Cause Insomnia						
ANTICONVULSANTS	STEROIDS					
Lamotrigine	Prednisone					
ANTIDEPRESSANTS	DECONGESTANTS					
Bupropion Protriptyline	Phenylpropanolamine Pseudoephedrine					
Fluoxetine	BRONCHODILATORS					
Escitalopram Venlafaxine	Theophylline					
BETA BLOCKERS	STIMULANTS/ALERTING AGENTS					
Propanolol Pindolol Metoprolol	Dextroamphetamine Methamphetamine Modafinil					
SUBSTANCES	IMMUNOSUPPRESSIVE AGENTS					
Caffeine Alcohol: sleep- maintenance insomnia	Interferon Prednisone Mycophenolate ANTIBIOTICS/ANTIVIRALS Efavirenz (Sustiva)					

Drugs increasing weight and OSA symptoms/ severity

Category	Drugs that cause weight gain	Possible alternatives		
Neuroleptics	Thioridazine, haloperidol, olanzapine, quetiapine, risperidone, clozapine	Ziprasidone, aripiprazole		
Tricyclic antidepressants	Amitriptyline, nortriptyline, imipramine, doxepin	Protriptyline, bupropion, nefazodone		
Monoamine oxidase inhibitors	Phenelzine			
Selective serotonin reuptake inhibitors	Paroxetine	Fluoxetine, sertraline		
Other antidepressants	Mirtazapine			
Anticonvulsants	Valproate, carbamazepine, gabapentin	Topiramate ^a , lamotrigine, zonisamide ^a		
Antidiabetic drugs	Insulin, sulfonylureas, thiazolidinediones	Acarbose, sitagliptin, saxagliptin, canagliflozin, dapagliflozin, pramlintide, exenatide, liraglutide, miglitol, metformin, orlistat		
Antihistamines	Cyproheptadine	Inhalers, decongestants		
$\beta\text{-}$ and $\alpha\text{-}adrenergic blockers$	Propranolol, doxazosin	ACE inhibitors ^b , calcium channel blockers		
Steroid hormones	Contraceptives, glucocorticoids, progestational steroids	Barrier methods, nonsteroidal anti-inflammatory agents		

IMPORTANT FOR CARDIOLOGIST: Drugs for Residual Sleepiness

- Drugs for residual sleepiness:
- All sympathomimetic drugs
- Sympathomimetic effects
- Management of CV risk
- Management of target organ

CV drugs and SBD (cause / consequences)

Strategies to prevent Drug – induced sleep risk

BENEFIT RISK RATION MATTERS

Step 1: Identify patients at risk Step 2: Modify treatment accordingly

- Review current drug therapy
 - Change in patient status
 - Indication no longer exists
 - Safer agent available
 - Drug interactions
 - Drug adverse effects
 - Simplification
- Discontinue unnecessary therapy
- Consider ADE as cause of any new symptom
- Consider non-pharmacologic approaches

